% ================================================================= :- pred constr(bool). :- mode constr(in). :- ignore constr/1. % ==================================================== % Program. sorting in ascending order.E.g., 3 =< 5 =< 5 =< 8 =< ... :- pred selectionsort(list(int),list(int)). :- mode selectionsort(in,out). selectionsort([],[]). selectionsort([H|T],[Min|T1]) :- cons(H,T,HT), listMin(HT,IsDef,Min), % HT is not empty. IsDef is true. delete(Min,HT,L1), % Taking the minimum away from list HT. selectionsort(L1,T1). :- pred delete(int,list(int),list(int)). :- mode delete(in,in,in). %delete(X,[],[]). % delete is not total delete(X,[Y|T],T) :- constr(X=Y). % Taking X away from [Y|T]. delete(X,[Y|T],[Y|TD]) :- % Deleting exactly one copy of X only. constr(~(X=Y)), % The list is not ordered. delete(X,T,TD). % The element X need not be the minimum. :- pred cons(int,list(int),list(int)). :- mode cons(in,in,out). cons(H,T,[H|T]). % ==================================================== % catamorphisms :- pred listMin(list(int),bool,int). :- mode listMin(in,out,out). :- cata listMin/3-1. listMin([],IsDef,A) :- constr( ((~IsDef) & (A=0)) ). % 0 can be any int. listMin([H|T],IsDef,Min) :- constr( IsDef & (Min = ite(IsDefT, ite(H (MinL=MinS)) )), listMin(L,IsDefL,MinL), listMin(S,IsDefS,MinS), selectionsort(L,S). :- pred ff2. ff2 :- constr(~( ( IsDefL & ( (IsDefLD & (X>MinL)) => (MinL = MinLD) )) & (( ~IsDefLD) => (MinL=X)) )), listMin(L,IsDefL,MinL), listMin(LD,IsDefLD,MinLD), delete(X,L,LD). :- pred ff3. ff3 :- constr(~( IsDefHT & ( MinHT=ite(IsDefT,ite(H