% ================================================================= :- pred constr(bool). :- mode constr(in). :- ignore constr/1. % ================================================================= % Program. ascending sorting (ascending because we take the minimum) 2 =< 5 =< 9 =< ... :- pred selectionsort(list(int),list(int)). :- mode selectionsort(in,out). selectionsort([],[X]). % ERROR: [X] -> [] selectionsort([H|T],[Min|T1]) :- cons(H,T,HT), listMin(HT,IsDef,Min), % HT is not empty. IsDef is true. delete(Min,HT,L1), % Taking the minimum away from list HT. selectionsort(L1,T1). :- pred delete(int,list(int),list(int)). :- mode delete(in,in,in). %delete(X,[],[]). % delete is not total delete(X,[Y|T],T) :- constr(X=Y). % taking X away from [Y|T]. delete(X,[Y|T],[Y|TD]) :- % Deleting exactly one copy of X only. constr(~(X=Y)), % The list is not ordered. delete(X,T,TD). % The element X need not be the minimum. :- pred cons(int,list(int),list(int)). :- mode cons(in,in,out). cons(H,T,[H|T]). % ==================================================== % catamorphism :- pred listMin(list(int),bool,int). :- mode listMin(in,out,out). :- cata listMin/3-1. listMin([],IsDef,A) :- constr( ((~IsDef) & (A=0)) ). listMin([H|T],IsDef,Min) :- constr(IsDef & (Min = ite(IsDefT, ite(H ( LLD = (LL-1) )) ), % len(L,LL), len(LD,LLD), listMin(L,IsDefMinL,MinL), % delete(X,L,LD). % %:- pred ff3. %ff3 :- % constr( ~(LHT = (LT+1)) ), % len(T,LT), len(HT,LHT), % cons(H,T,HT). % ==================================================== :- query ff1/0. %:- query ff2/0. %:- query ff3/0. % ==================================================== % Catamorphic abstraction :- cata_abs list(int) ==> len(L,LYs), listMin(L,IsDefMinL,MinL). % ==================================================S