% ================================================================= :- pred constr(bool). :- mode constr(in). :- ignore constr/1. :- type bintree_int ---> leaf ; node(int,bintree_int,bintree_int). % This is a binary tree supporting a heap. % leaf is the EMPTY bintree_int. Nodes may have DUPLICATE integer values. % ================================================================ % Program: descending sorting. :- pred heapsort(list(int),list(int)). :- mode heapsort(in,out). heapsort(L,SL) :- list_to_heap(L,H), heap_to_list(H,SL). % =============================================================== % making a heap out of a list. % Program predicate: not be a catamorphism. :- pred list_to_heap(list(int),bintree_int). :- mode list_to_heap(in,out). list_to_heap([],leaf). list_to_heap([X|Xs], Heap) :- list_to_heap(Xs, HeapXs), insert_heap(X, HeapXs, Heap). % ------- :- pred insert_heap(int,bintree_int,bintree_int). :- mode insert_heap(in,in,out). insert_heap(X, leaf, node(X,leaf,leaf)). insert_heap(X, node(Top,L,R), node(Top,R,L1)) :- % Torsion! node(Top,R,L1), not node(Top,L1,R), and constr(X=Top), insert_heap(Top,L,L1). % X on top. Insert Top in the left son-node. % ---------------------------------- :- pred mkbtree(int,bintree_int,bintree_int,bintree_int). :- mode mkbtree(in,in,in,out). mkbtree(Top,Left,Right, node(Top,Left,Right)). % ---------------------------------- % Making a weakly-descending list out of a heap. % Program predicate: need not be a catamorphism. :- pred heap_to_list(bintree_int,list(int)). :- mode heap_to_list(in,out). heap_to_list(leaf,[]). heap_to_list(node(Top,leaf,leaf), [Top]). heap_to_list(node(Top,node(LTop,LL,LR),leaf), [Top|Tail]) :- mkbtree(LTop,LL,LR,NewHeap), heap_to_list(NewHeap,Tail). heap_to_list(node(Top,leaf,node(RTop,RL,RR)), [Top|Tail]) :- mkbtree(RTop,RL,RR,NewHeap), heap_to_list(NewHeap,Tail). heap_to_list(node(Top,node(LT,LL,LR),node(RT,RL,RR)), [Top|Tail]) :- mkbtree(LT,LL,LR,NewLHeap), mkbtree(RT,RL,RR,NewRHeap), heap_merge(NewLHeap,NewRHeap,MergedHeap), heap_to_list(MergedHeap,Tail). :- pred heap_merge(bintree_int,bintree_int,bintree_int). :- mode heap_merge(in,in,out). % heap_merge is a total function heap_merge(leaf,leaf, leaf). heap_merge(node(LTop,LL,LR),leaf, node(LTop,LL,LR)). heap_merge(leaf,node(RTop,RL,RR), node(RTop,RL,RR)). heap_merge(node(LTop,LL,LR),node(RTop,RL,RR), node(RTop,node(LTop,LL,LR),MergedHeap)) :- LTop =< RTop, heap_merge(RL,RR,MergedHeap). heap_merge(node(LTop,LL,LR),node(RTop,RL,RR), node(LTop,MergedHeap,node(RTop,RL,RR))) :- LTop > RTop, heap_merge(LL,LR,MergedHeap). % =============================================================== % Catamorphisms. % --- min of a list :- pred listmin(list(int),bool,int). :- mode listmin(in,out,out). :- cata listmin/3-1. listmin([],IsDef,A) :- constr( ((~IsDef) & (A=0)) ). listmin([H|T],IsDef,Min) :- constr( IsDef & (Min = ite(IsDefT, ite(H (MinL=MinS)) )), listmin(L,IsDefLMin,MinL), listmin(S,IsDefSMin,MinS), heapsort(L,S). %% --------------- % contract on list_to_heap: (postcondition: true) :- spec list_to_heap(L,H) ==> listmin(L,B,NL), treemin(H,B1,NH). % ------------------ % Contract on heap_to_list: (postcondition: true) :- spec heap_to_list(H,L) ==> treemin(H,B,SH), listmin(L,B1,LL). % ------------------ % Contract on insert_heap: (postcondition: true) :- spec insert_heap(X,H,H1) ==> treemin(H,B,SH), treemin(H1,B1,SH1). % ---------------------------------------------------------------- % Contract on heap_merge: (postcondition: true) :- spec heap_merge(HL,HR,H1) ==> treemin(HL,B1,SHL), treemin(HR,B2,SHR), treemin(H1,B3,SH1). %---------------------------------------------------------------- % Contract on mkbtree: (postcondition: true) :- spec mkbtree(T,HL,HR,H1) ==> treemin(HL,B1,SHL), treemin(HR,B2,SHR), treemin(H1,B3,SH1). % =============================================================== :- query ff1/0. % ===============================================================