; Automatically generated by map2smt (set-logic HORN) (declare-fun new8 (Int Bool) Bool) (declare-fun new4 (Int Bool Int Int Bool) Bool) (declare-fun new3 (Int Bool Int Int Bool) Bool) (declare-fun new2 (Int Bool Int Int Bool) Bool) (declare-fun new15 (Int Bool) Bool) (declare-fun new12 (Int Bool) Bool) (declare-fun new1 (Int Bool Int Int Bool) Bool) (declare-fun ff () Bool) (assert (forall ( (A Int) (B Bool) ) (=> (= B false) (new15 A B) ) ) ) (assert (forall ( (A Int) (B Bool) ) (=> (= B true) (new15 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 1) (>= (- A D) 1) (<= D (- A 1)) (new15 A B) ) (new15 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 0) (>= D A) (<= (- A D) (- 1)) (new15 A B) ) (new15 A B) ) ) ) (assert (forall ( (A Int) (B Bool) ) (=> (= B false) (new12 A B) ) ) ) (assert (forall ( (A Int) (B Bool) ) (=> (= B true) (new12 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 1) (>= (- A D) 1) (<= D (- A 1)) (new12 A B) ) (new12 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 0) (>= D A) (<= (- A D) (- 1)) (new12 A B) ) (new12 A B) ) ) ) (assert (forall ( (A Int) (B Bool) ) (=> (= B false) (new8 A B) ) ) ) (assert (forall ( (A Int) (B Bool) ) (=> (= B true) (new8 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 1) (>= (- A D) 1) (<= D (- A 1)) (new8 A B) ) (new8 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) ) (=> (and (= C 0) (>= D A) (<= (- A D) (- 1)) (new8 A B) ) (new8 A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Bool) ) (=> (and (= C true) (= B false) ) (new4 A B A A C) ) ) ) (assert (forall ( (A Int) (B Bool) (C Bool) ) (=> (and (= C true) (= B true) (>= A A) ) (new4 A B A A C) ) ) ) (assert (forall ( (A Int) (B Bool) (C Bool) (D Int) (E Int) (F Int) ) (=> (and (= D 1) (= E 1) (>= (- A F) 1) (>= (- A F) 1) (<= F (- A 1)) (<= F (- A 1)) (<= F (- A 1)) (new4 A B A A C) ) (new4 A B A A C) ) ) ) (assert (forall ( (A Int) (B Bool) (C Bool) (D Int) (E Int) (F Int) ) (=> (and (= D 0) (= E 0) (>= F A) (>= F A) (>= F A) (<= (- A F) (- 1)) (<= (- A F) (- 1)) (new4 A B A A C) ) (new4 A B A A C) ) ) ) (assert (forall ( (A Int) (B Bool) (C Bool) ) (=> (and (= C true) (= B false) ) (new3 A B A A C) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) ) (=> (and (= E 1) (= D false) (= B false) (>= (- A C) 1) (<= C (- A 1)) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) ) (=> (and (= E 0) (= D false) (= B false) (>= C A) (<= (- A C) (- 1)) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) ) (=> (and (= D true) (= B true) (<= A (- C 1)) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) ) (=> (and (= D true) (= B true) (>= A C) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 1) (= F 1) (>= (- A G) 1) (>= (- A G) 1) (<= G (- A 1)) (<= G (- A 1)) (<= G (- C 1)) (new3 A B C A D) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) (E Int) (F Int) ) (=> (and (= D 1) (= E 1) (>= (- A F) 1) (>= (- A F) 1) (>= F C) (<= F (- A 1)) (<= F (- A 1)) (new8 A B) ) (new3 A B C A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) (E Int) (F Int) ) (=> (and (= D 0) (= E 0) (>= F A) (>= F A) (<= (- A F) (- 1)) (<= (- A F) (- 1)) (<= F (- C 1)) (new8 A B) ) (new3 A B C A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 0) (= F 0) (>= G A) (>= G A) (>= G C) (<= (- A G) (- 1)) (<= (- A G) (- 1)) (new3 A B C A D) ) (new3 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) ) (=> (and (= E 1) (= D false) (= B false) (>= (- A C) 1) (>= (- A C) 1) (<= C (- A 1)) ) (new2 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) ) (=> (and (= D true) (= B true) (>= (- A C) 1) (>= A C) ) (new2 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 1) (= F 1) (>= (- A G) 1) (>= (- A G) 1) (>= (- A C) 1) (<= G (- A 1)) (<= G (- A 1)) (<= G (- C 1)) (new2 A B C A D) ) (new2 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) (E Int) (F Int) ) (=> (and (= D 1) (= E 1) (>= (- A F) 1) (>= (- A F) 1) (>= (- A C) 1) (>= F C) (<= F (- A 1)) (<= F (- A 1)) (new12 A B) ) (new2 A B C A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 0) (= F 0) (>= (- A C) 1) (>= G A) (>= G A) (>= G C) (<= (- A G) (- 1)) (<= (- A G) (- 1)) (new2 A B C A D) ) (new2 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) ) (=> (and (= E 0) (= D false) (= B false) (>= C A) (<= (- A C) (- 1)) (<= (- A C) (- 1)) ) (new1 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) ) (=> (and (= D true) (= B true) (<= (- A C) (- 1)) (<= A (- C 1)) ) (new1 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 1) (= F 1) (>= (- A G) 1) (>= (- A G) 1) (<= (- A C) (- 1)) (<= G (- A 1)) (<= G (- A 1)) (<= G (- C 1)) (new1 A B C A D) ) (new1 A B C A D) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Int) (E Int) (F Int) ) (=> (and (= D 0) (= E 0) (>= F A) (>= F A) (<= (- A F) (- 1)) (<= (- A F) (- 1)) (<= (- A C) (- 1)) (<= F (- C 1)) (new15 A B) ) (new1 A B C A B) ) ) ) (assert (forall ( (A Int) (B Bool) (C Int) (D Bool) (E Int) (F Int) (G Int) ) (=> (and (= E 0) (= F 0) (>= G A) (>= G A) (>= G C) (<= (- A G) (- 1)) (<= (- A G) (- 1)) (<= (- A C) (- 1)) (new1 A B C A D) ) (new1 A B C A D) ) ) ) (assert (forall ( (A Bool) (B Bool) (C Int) (D Int) ) (=> (and (= A true) (= B false) (>= (- C D) 1) (new1 D B C D A) ) ff ) ) ) (assert (forall ( (A Bool) (B Bool) (C Int) (D Int) ) (=> (and (= A true) (= B false) (<= (- C D) (- 1)) (new2 D B C D A) ) ff ) ) ) (assert (forall ( (A Bool) (B Bool) (C Int) (D Int) ) (=> (and (= A false) (= B true) (new3 C B D C A) ) ff ) ) ) (assert (forall ( (A Bool) (B Int) (C Bool) ) (=> (and (= A false) (new4 B C B B A) ) ff ) ) ) (assert (not ff)) (check-sat)